Different signalling in infarcted and non-infarcted areas of rat failing hearts: A role of necroptosis and inflammation.

July 21, 2019

Adriana Adameová

Necroptosis has been recognized in heart failure (HF). In this study, we investigated detailed necroptotic signalling in infarcted and non-infarcted areas separately and its mechanistic link with main features of HF. Post-infarction HF in rats was induced by left coronary occlusion (60 minutes) followed by 42-day reperfusion. Heart function was assessed echocardiographically. Molecular signalling and proposed mechanisms (oxidative stress, collagen deposition and inflammation) were investigated in whole hearts and in subcellular fractions when appropriate. In post-infarction failing hearts, TNF and pSer229-RIP3 levels were comparably increased in both infarcted and non-infarcted areas. Its cytotoxic downstream molecule p-MLKL, indicating necroptosis execution, was detected in infarcted area. In non-infarcted area, despite increased pSer229-RIP3, p-MLKL was present in neither whole cells nor the cell membrane known to be associated with necroptosis execution. Likewise, increased membrane lipoperoxidation and NOX2 levels unlikely promoted pro-necroptotic environment in non-infarcted area. Collagen deposition and the inflammatory csp-1-IL-1β axis were active in both areas of failing hearts, while being more pronounced in infarcted tissue. Although apoptotic proteins were differently expressed in infarcted and non-infarcted tissue, apoptosis was found to play an insignificant role. p-MLKL-driven necroptosis and inflammation while inflammation only (without necroptotic cell death) seem to underlie fibrotic healing and progressive injury in infarcted and non-infarcted areas of failing hearts, respectively. Upregulation of pSer229-RIP3 in both HF areas suggests that this kinase, associated with both necroptosis and inflammation, is likely to play a dual role in HF progression.

Mitochondrial integrity during early reperfusion in an isolated rat heart model of donation after circulatory death—consequences of ischemic duration

December 21, 2018

Sarah Longnus

BACKGROUND: Cardioprotection and graft evaluation after ischemia-reperfusion (IR) are essential in facilitating heart transplantation with donation after circulatory death. Given the key role of mitochon- dria in IR, we aimed to investigate the tolerance of cardiac mitochondria to warm, global ischemia and to determine the predictive value of early reperfusion mitochondria-related parameters for post-ische- mic cardiac recovery.
METHODS: Isolated, working rat hearts underwent 0, 21, 24, 27, 30, or 33 minutes of warm, global ischemia, followed by 60 minutes of reperfusion. Functional recovery (developed pressure£heart rate) was determined at 60 minutes of reperfusion, whereas mitochondrial integrity was measured at 10 minutes of reperfusion.
RESULTS: Functional recovery at 60 minutes of reperfusion decreased with ≥ 27 minutes of ischemia vs no ischemia (n = 7−8/group; p < 0.01). Cytochrome c, succinate release, and mitochondrial Ca2+ con- tent increased with ≥ 27 minutes of ischemia vs no ischemia (p < 0.05). Ischemia at ≥ 21 minutes decreased mitochondrial coupling, adenosine 50-triphosphate content, mitochondrial Ca2+ retention capacity, and increased oxidative damage vs no ischemia (p < 0.05). Reactive oxygen species (ROS) from reverse electron transfer increased with 21 and 27 minutes of ischemia vs no ischemia and 33 minutes of ischemia (p < 0.05), whereas ROS from forward electron transfer increased only with 33 minutes of ischemia vs no ischemia (p < 0.05). Mitochondrial coupling and adenosine 50-triphosphate content correlated positively and cytochrome c, succinate, oxidative damage, and mitochondrial Ca2+ content correlated negatively with cardiac functional recovery (p < 0.05). CONCLUSIONS: Mitochondrial dysfunction occurs with shorter periods of ischemia than cardiac dys- function. Mitochondrial coupling, ROS emission from reverse electron transfer, and calcium retention are particularly sensitive to early reperfusion injury, reflecting potential targets for cardioprotection.

Nitroglycerin limits infarct size through S-nitrosation of Cyclophilin D: A novel mechanism for an old drug

August 27, 2018

Ioanna Andreadou

Nitroglycerin (NTG) given prior to an ischemic insult exerts cardioprotective effects. However, whether administration of an acute low dose of NTG in a clinically relevant manner following an ischemic episode limits infarct size, has not yet been explored.
Methods and Results
Adult mice were subjected to acute myocardial infarction in vivo and then treated with vehicle or low dose NTG prior to reperfusion. This treatment regimen minimized myocardial infarct size without affecting hemodynamic parameters, but the protective effect was absent in mice rendered tolerant to the drug. Mechanistically, NTG was shown to nitrosate and inhibit cyclophilin D (CypD), and NTG administration failed to limit infarct size in CypD knockout mice. Additional experiments revealed lack of the NTG protective effect following genetic (knockout mice) or pharmacological inhibition (L-NAME treatment) of the endothelial nitric oxide synthase (eNOS). The protective effect of NTG was attributed to preservation of the eNOS dimer. Moreover, NTG retained its cardioprotective effects in a model of endothelial dysfunction (ApoE knockout) by preserving CypD nitrosation. Human ischemic heart biopsies revealed reduced eNOS activity and exhibited reduced CypD nitrosation.
Low dose NTG given prior to reperfusion reduces myocardial infarct size by preserving eNOS function, and the subsequent eNOS-dependent S-nitrosation of cyclophilin D, inhibiting cardiomyocyte necrosis. This novel pharmacological action of NTG warrants confirmation in clinical studies, although our data in human biopsies provide promising preliminary results.