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and infarction. Am J Physiol Heart Circ Physiol 314: H812–H838, 2018. First
published January 12, 2018; doi:10.1152/ajpheart.00335.2017.—Myocardial in-
farction is a prevalent major cardiovascular event that arises from myocardial
ischemia with or without reperfusion, and basic and translational research is needed
to better understand its underlying mechanisms and consequences for cardiac
structure and function. Ischemia underlies a broad range of clinical scenarios
ranging from angina to hibernation to permanent occlusion, and while reperfusion
is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its
own. In this consensus statement, we present recommendations for animal models
of myocardial ischemia and infarction. With increasing awareness of the need for
rigor and reproducibility in designing and performing scientific research to ensure
validation of results, the goal of this review is to provide best practice information
regarding myocardial ischemia-reperfusion and infarction models.

Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guide-
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INTRODUCTION

Ischemia occurs when blood flow to the myocardium is
reduced (129). Ischemia of prolonged duration induces myo-
cardial infarction (MI), and MI is a common cause of heart
failure (295). Ischemic cardiomyopathy is the most common
cause of heart failure and can arise from remodeling after an
acute ST segment elevation myocardial infarction (STEMI)
from multiple small nontransmural infarctions or from chronic
repetitive ischemia in the absence of infarction (15). Ischemia
can range in its extent from low flow to total coronary occlu-
sion, can be of short to long duration, can be successfully
reversed by reperfusion in a timely manner or not reperfused at
all, and can induce injury or provide cardioprotection. Like-
wise, there is a diverse variety of animal models to address
each type of ischemia within this spectrum. Figure 1 shows the
range of models that reflect the scale of ischemia and variety of
models available to better understand how the heart responds to
ischemia and the mechanisms whereby the heart can either
adapt to ischemia or progress to failure.

Experimental models of myocardial ischemia serve two
nearly opposing aims, both worthy of investigation. The first
aim is to provide better mechanistic insight that cannot be
obtained from a clinical situation. To achieve this aim, exper-
imental studies may be reductionist with low direct applicabil-
ity to the clinical situation (e.g., when using temporally in-
duced cell specific over- or underexpression of a gene). The
second aim is to provide mechanistic insight from an experi-
mental study for translation to the clinical situation, and for this
aim experimental models must replicate the clinical setting as
closely as possible (127).

For cardiovascular science to continue advancing, experi-
mental results should be reproducible and replicable, and
rigorous experimental design is a fundamental element of
reproducibility. Reproducibility refers to results that can be
repeated by multiple scientists and is a means of validation
across laboratories. Rigor refers to robust and unbiased exper-
imental design, methodology, analysis, interpretation, and re-
porting of results. With increasing awareness by journals and
granting agencies of the need for reproducibility and rigor in
designing and performing scientific research in preclinical
studies, the goal of this consensus article is to provide best
practice information regarding myocardial ischemia and infarc-
tion models. The strengths and limitations of the different
models are discussed, with a summary shown in Table 1. We
also address ways to incorporate Animals in Research: Report-
ing In Vivo Experiments (ARRIVE) guidelines and similar
standard operating procedures (168). The extensive reference
list provided also serves as a resource for researchers new to
the field.

IN VITRO AND EX VIVO MODELS

Myocyte Cell Culture

Model rationale. Isolated fresh or cultured cardiomyocytes
can be used as a powerful in vitro model of ischemia-reperfu-
sion (I/R), whereby ischemia is simulated with hypoxia and
reperfusion with reoxygenation (H/R). This system allows
precise control of the cellular and extracellular environment,
notably the specific impact of hypoxia and reoxygenation on
cardiomyocytes without confounding influences of other cell
types (e.g., fibroblasts, endothelial cells, inflammatory/immune
cells, and platelets) or circulating factors (e.g., hormones,
neurotransmitters, and cytokines).

Variables measured. The most common use of this model
system is for in vitro testing of specific factors proposed to be
involved in I/R injury or cardioprotection (31, 166, 227, 240,
244, 330). After H/R, cultured cardiomyocytes undergo apo-
ptosis, accompanied by cytochrome c release and caspase
activation or necrosis (200, 296). Thus, assays of cell viability
are often performed to assess the role of a particular genetic or
pharmacological intervention in exacerbating or protecting the
cell from H/R-induced cell death. Viability may be measured
with a variety of assays, including lactate dehydrogenase
(LDH) release or propidium iodide exclusion as an indicator of
membrane integrity (24, 31, 58). Apoptosis is assessed with
TUNEL or annexin V staining (24, 58, 166). Mitochondrial
damage, including disruption of mitochondrial membrane po-
tential, is also a key component of cellular injury after H/R and
may be assessed using fluorescent dyes, such as tetramethyl-
rhodamine methyl ester (TMRM). The loss of mitochondrial
membrane potential causes TMRM to leak from the mitochon-
dria, decreasing fluorescence (24, 31). In addition, reactive
oxygen species (ROS) have been implicated in H/R injury
(275); thus, ROS production is another common assessment
(24, 58, 124, 125, 227).

More detailed analyses of cardiomyocyte responses to H/R
include assessments of morphology, contractile function (i.e.,
cell shortening), intracellular Ca2� handling, and action poten-
tials (124, 166, 207). Contractile function is an important but
often overlooked variable in H/R assays, since contraction
requires ~70% of total energy utilization within a myocyte
(182). Many H/R studies use quiescent myocytes; however,
markedly impaired recovery of myocyte function and increased
cell death result when cells are stimulated to contract through-
out the H/R protocol (207). For all variables assessed, technical
replicates on the same sample should be performed to establish
the variability of the measurement technique. Biological rep-
licates often include measurements on plates or myocytes from
the same heart/harvest. If these are to be treated as independent
samples, n values for both the plate/myocyte number as well as
heart/harvest number should be fully reported.

There is currently no standardized protocol for H/R in
cultured cardiomyocytes, but cardiomyocyte source and H/R
conditions must be carefully considered. Theoretically, freshly
isolated adult cardiomyocytes are the ideal gold standard for
H/R experiments (166, 207, 244), although neonatal cardiomy-
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ocytes (58, 227, 296), cardiac progenitor cells (12), induced
pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) (24,
31), and various cell lines such as H9c2 and HL-1 have been
used (330). Of these, neonatal cardiomyocytes are most com-
monly used, due to their relative ease of isolation and robust
viability for several days in culture; however, neonatal cardi-
omyocytes are more resistant to hypoxia than adult myocytes
(236, 255), and the mechanisms of this resistance remain
incompletely resolved, which may limit interpretation of such
results when designing more translational studies (235). Adult
myocytes are preferred, because ischemic heart disease almost
exclusively occurs in adults, and fresh isolation eliminates the
potential confounding factor of phenotypic transformation in
culture. The caveat is that adult cardiomyocytes are more
difficult to isolate and do not survive long in culture, impeding
longer H/R protocols or those requiring pre-H/R transfection.
Therefore, many investigators turn to neonatal cardiomyo-
cytes or cell lines (e.g., H9c2 or HL-1) if genetic modifica-
tions are necessary, in which case these genetically engi-
neered cells may be an important complement to in vivo or
adult cardiomyocyte studies. In addition, adult myocytes do
not form monolayers as seen with neonatal cells, limiting
their use for studies on gap junctions and electrical conduc-
tivity. Thus, authors should carefully consider experimental
end points in the context of overall study design, because

either neonatal or adult cell sources will be the best choice
depending on the question posed. For both neonatal and
adult primary cells, isolation protocols must assure for a
cardiomyocyte-enriched population (i.e., free of fibroblasts
and other cell types). For neonatal cells, the differential
attachment technique is often used, whereas gravity separa-
tion is typical for adult cardiomyocytes (161, 287). Regard-
less of the isolation and enrichment method, manual or
automated cell counting, expression of cardiomyocyte-spe-
cific markers, and visualization or quantification of T-tubu-
lar structure should be performed to verify purity and
phenotype. Use of iPSC-CMs may overcome some of these
primary cell limitations, but the response of iPSC-CMs to
H/R has not yet been fully characterized and may depend on
their maturation state (256).

The most common in vitro conditions used to simulate in
vivo ischemia are anoxia (�1% O2, 5% CO2, 94�% N2) and
complete substrate depletion (serum-free, glucose-free me-
dium). There are many variations to the protocol with addi-
tional conditions that more closely mimic the ischemic heart,
such as partial hypoxia, partial or no substrate depletion,
hyperkalemia, acidosis, and use of electrical stimulation (207).
The cell type needs to be carefully considered when deter-
mining optimal control and ischemic conditions. Neonatal
cardiomyocytes and cell lines (H9c2 and HL-1) favor glu-
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cose metabolism and under control conditions are often
cultured in hyperglycemic medium, which is known to
induce ROS production and cell death in adult cardiomyo-
cytes. Furthermore, neonatal cardiomyocytes are insulin
resistant and supraphysiological concentrations of insulin
are required to increase glucose uptake in these cells com-
pared with adult cardiomyocytes (201). Thus, studies focus-
ing on metabolism with H/R and/or metabolic pathology
need to carefully consider the cellular environment in both
control and ischemic conditions. In addition to the cellular
environment, the duration of hypoxia and reoxygenation is
also an important consideration, as myocyte viability not
only depends on the duration of hypoxia but also the
duration of reoxygenation (166, 244).

To summarize, the major strengths and limitations of studies
using isolated cardiomyocytes are shown in Table 1. The major
strength of H/R experiments in cultured cardiomyocytes is the
ability to control precisely the cellular and extracellular envi-
ronment, each factor present in ischemic conditions (e.g.,
hypoxia, metabolic inhibition, or acidosis) can be tested alone
and in combination to determine individual contributions to
cellular injury. Even with the most carefully designed experi-

mental protocol, in vitro conditions can never fully recapitulate
the full spectrum of I/R injury in vivo. Thus, although in vitro
experiments can be mechanistically informative and identify
new targets for intervention, it is imperative that the results are
later validated in an appropriate intact animal model. Nonethe-
less, even if there is a discrepancy between in vivo I/R and in
vitro H/R experiments, important insight is to be gained from
parallel studies. As an example, angiopoietin-like protein 4
(ANGPTL4) reduces infarct size after I/R in vivo but does not
prevent cardiomyocyte death in vitro (90). These findings
indicate that other cell types (e.g., endothelial cells, fibroblasts,
or immune cells) are key to the cardioprotective effect of
ANGPTL4. Likewise, factors that prevent myocyte cell death
in culture may not reduce infarct size in vivo, suggesting that
the cardioprotective effect may be outweighed by noncar-
diomyocyte factors.

Isolated Perfused Hearts

Model rationale. The isolated perfused heart is a conve-
nient and reproducible model to test mechanisms of myo-
cardial injury and cardioprotection (14, 192). The heart is

Table 1. Comparison of different approaches with strengths and limitations for each method

Approach End-Point Measurements Strengths Limitations and Pitfalls

In vitro
cardiomyocytes

Cell viability (live-dead assay) High throughput Reductionist
Type of cell death (i.e., apoptosis) Isolate effects of hypoxia/reoxygenation on

cardiomyocytes without other cell types or
circulating factors

Cardiomyocyte viability may not predict
changes in infarct size in vivo

Adult cardiomyocyte culture technically
challenging

Isolated perfused
hearts

Infarct size per area at risk Relatively easy and reproducible Tissue edema
Left ventricular function Can study ischemia and reperfusion May not fully represent the in vivo response
Assessment of cardiac troponin I as a

secondary cardiac injury index
Accurate measure of infarct size Glucose as the sole substrate
Ample sample for biochemistry Limited stability
Compatible with NMR studies Excessive coronary flow
Capacity for high throughput Reductionist
Neurohormonal factor independent
Eliminates confounding effect of intervention on

systemic blood vessels or circulating factors
Angina Regional flow and function Close to clinical situation Technically complex; time and cost

intensiveMetabolism, morphology, molecular
biology, nerve activity, rhythm

Hibernation/
stunning

Regional flow and function Close to clinical situation Technically complex; time and cost
intensiveMetabolism, morphology, molecular

biology, rhythm
Permanent

occlusion MI
Inflammation, wound healing, scar

formation, remote region myocytes,
electrical activity

In the era of percutaneous coronary intervention,
~15–25% patients are not successfully
reperfused in a timely manner (53, 104)

Does not reflect the reperfused MI
patient response

Robust remodeling response; large effect size
Ischemia-

reperfusion MI
Inflammation, wound healing, scar

formation, myocyte viability, electrical
activity

Close to clinical scenario More technically challenging surgery
Reperfusion injury can expand area of

damage
Ablation Inflammation, wound healing, scar

formation, myocyte electrical activity
Geometrically defined lesion Nonischemic lethal injury
Infarct size/location independent of coronary

anatomy
Mechanisms of cell death different from

ischemia
Cardioprotection Infarct size per area at risk

Left ventricular geometry and function; no
reflow; circulating biomarkers such as
cardiac troponin I

Mouse, rat, rabbit, and pig: models of low
collateral flow (measurement of regional
myocardial blood flow not required)

Rat and rabbit: reliable infarct production;
relatively high survival rate

Pig: mimics humans with low collateral flow
Dog: large amount of historical data; shows

effect of intervention in the setting of variable
collateral flow; mimics humans with high
collateral flow

Mouse: small size; substantial variability
requiring large n values

Rat, rabbit, pig, and dog: not high
throughput; higher cost

Rabbit, pig, and dog: potential for lethal
arrhythmias

Dog: variability in collateral perfusion
(regional myocardial blood flow must
be measured)

MI, myocardial infarction.
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removed from the animal and perfused, typically with a
physiological saline solution such as Krebs-Henseleit buf-
fer. For screening drugs or interventions for protective
properties, this model is ideal, because the isolated perfused
heart is studied independently of circulating factors or
neuroendocrine inputs from other organs but retains the
function, composition, and architecture of the intact heart.
This approach is also easily amenable to biochemistry or
imaging studies in a nuclear magnetic resonance (NMR)
magnet, which can provide useful information to decipher
mechanisms of cardioprotection.

Perfused hearts can be studied in a working heart mode or in
a nonworking Langendorff mode. In the Langendorff mode,
the perfusate enters the coronary arteries to perfuse and oxy-
genate the heart, which continues to beat for several hours
(292). Heart rate and left ventricular (LV) developed pressure
are measured with a fluid-filled balloon placed in the cavity of
the LV and connected to a pressure transducer as indexes of
cardiac function (physiology). The heart can be perfused at con-
stant pressure, in which case the flow rate can vary, or flow can be
set with a pump, in which case the perfusion pressure can vary. In
the Langendorff mode, the heart does not pump against a gradient
and does not perform external work (226). In the working heart
mode, the perfusate enters the atrium at a filling pressure set by the
operator, and the heart pumps perfusate against a hydrostatic
pressure set to different levels (30). A heart model performing
external work is technically more challenging, particularly with
smaller hearts.

In a model of global ischemia, perfusate flow to the entire
heart is stopped, whereas in a regional ischemic model, a suture
is tied around a single coronary artery for occlusion. After the
ischemic period (typically 20–40 min for rodent models),
perfusion is restarted and the heart will usually beat and
develop a lower LV developed pressure than at baseline,
reflecting postischemic contractile dysfunction or stunning.
Contractile dysfunction is a measure of ischemic injury but is
not synonymous with cell death. Both contractile dysfunction
and cell death often result from the same mechanisms. It is
therefore important not to infer that protection against contrac-
tile dysfunction is the same as protection against infarct size.

Variables measured. To measure cell death or infarct size, it
is necessary to reperfuse the heart for a sufficient duration (at
least 60–120 min) to wash out reductive equivalents (79, 271).
Triphenyltetrazolium chloride (TTC) is then added to the
perfusate or hearts are cut into transverse slices and incubated
in TTC solution. TTC is a dye that stains viable myocardium
red due to a formazan reaction with NADH and NADPH,
which are washed out from irreversibly injured myocardium
(81, 172), whereas necrotic tissue remains unstained and thus
appears white. Necrotic tissue area is normalized to the total
ventricular area (global ischemia) or the ischemic area at risk
for infarction (regional ischemia). For regional ischemia prep-
arations, the area at risk is measured after coronary reocclusion
and staining of the nonischemic myocardium with a dye such
as Evans blue.

The susceptibility of the heart to arrhythmias during I/R is
readily assessed through recording of an electrocardiogram
(313). Updated guidelines exist for the quantification of such
arrhythmias (56). The isolated heart is amenable to monitoring
of intracellular ions by optical methods using fluorescent indi-
cators (where the signal originates from a thin layer of epicar-

dial cells) or by NMR spectroscopy (where the signal is a
global average from the whole heart). Intracellular Na� and
Ca2� concentrations have been monitored and intracellular H�

concentration (i.e., intracellular pH) has been estimated in
isolated rodent hearts perfused and subjected to I/R within the
vertical bore of the NMR magnet (288). Intracellular high-
energy phosphate (ATP and creatine phosphate) have also been
monitored by this method, and recent developments using
hyperpolarized substrates now also allow real-time analysis of
metabolic flux through distinct pathways (167).

The rate of occurrence of cell death is determined by the
work that the heart performs at the time it becomes ischemic.
When global flow is stopped completely, the heart will con-
tinue to beat for a short period of time and continue to consume
ATP. Reducing work at the start of ischemia is cardioprotec-
tive, and this is the basis of cardioplegic solutions. Therefore,
it is important to assure that work is similar between control
and experimental hearts, which means that heart rate and
temperature must be controlled and held constant in the dif-
ferent treatment groups (281, 292). Due to the lack of neuro-
humoral factor influences on the perfused heart, heart rate is
typically lower than in an intact animal, and it can be con-
trolled by pacing. A slight (�1°C) difference in temperature
can result in a large difference of infarct size. Temperature is
usually measured by a probe in the heart and controlled by
immersing the heart in a fluid bath.

In the absence of blood, the reduction in the oxygen-carrying
ability of the saline perfusate results in edema and an increase
in flow rate. Because the mouse has a high heart rate, it is likely
that oxygen delivery is on the edge of oxygen demand under
baseline perfusion conditions. Furthermore, Krebs-Henseleit
buffer typically contains only glucose as a substrate, whereas
the heart normally uses fatty acids as its prime substrate. Fatty
acids can be given as substrates but require the addition of a
vehicle such as BSA and also require specialized methods for
oxygenating the buffer. An advantage of the perfused heart
model is that it allows one to examine the impact of different
substrates either alone or in combinations. The effect of dif-
ferences associated with perfusion with long-chain versus
short-chain fatty acids also can be studied. Ex vivo hearts can
be readily perfused with radioactive- or stable isotope-labeled
substrates, allowing evaluation of substrate selection and me-
tabolism (167, 211, 245).

The no-reflow phenomenon (179) can also impact infarct
size and its measurement in isolated hearts. During ischemia
and early reflow, the heart goes into contracture, which restricts
flow to the subendocardium. The severity of no reflow depends
on the severity of ischemic injury and can vary between control
and protected hearts. In isolated hearts, no-reflow issues can be
reduced by deflating the balloon in the LV for a few minutes
right at the start of reperfusion (94).

To summarize, the major strengths and limitations of the
isolated perfused heart are shown in Table 1. In consideration
for all of the above factors, it is imperative that control and
treated hearts are studied under identical conditions. Although
ischemic pre- and postconditioning were originally described
in an in vivo dog model, much of the information about the
molecular signaling pathways responsible for protection was
established in perfused heart models (128).
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IN VIVO MODELS

Chronic Coronary Artery Disease

Coronary stenosis and stress-induced myocardial ischemia:
model rationale and variables measured. Reversible episodes
of ischemia can lead to contractile dysfunction in the absence
of significant myocyte necrosis (42). Because ischemic entities
are frequently encountered in clinical practice, the task of
understanding their pathophysiology and testing therapeutic
interventions has stimulated the development of animal models
in which acute and chronic adaptations to ischemia and the
ensuing functional recovery can be evaluated over time. Most
of these entities are consequences of either brief or chronic
episodes of ischemia, and the models developed to study them
will be discussed separately below.

Chronic stable angina is a clinical condition whereby a
patient has one or more coronary stenoses that have largely
compromised or even exhausted autoregulatory coronary re-
serve. Frequently, these limitations are partially compensated
by collateral blood flow from adjacent less-compromised cor-
onary arteries such that myocardial blood flow and contractile
function remain normal at rest. Stress situations such as exer-
cise, emotions, or pain, however, can precipitate acute myo-
cardial ischemia with or without typical chest pain. Chronic
stable angina in patients does not usually inflict global myo-
cardial ischemia but is a regional event. The acute precipitation
of myocardial ischemia requires an in vivo model where an
acute coronary stenosis can be produced to reduce coronary
blood flow. Alternatively, a stable stenosis must be created
where blood flow is maintained at baseline but acute ischemia
is elicited, e.g., by pacing or adrenergic activation in anesthe-
tized animals or by exercise in conscious animals (9, 93, 131).

To reflect the regional character of chronic stable angina,
regional myocardial blood flow and regional contractile func-
tion must be measured. The standard approach to monitor
regional blood flow is to use microspheres (142), which have
traditionally been labeled with radioactive isotopes (66) and,
more recently, nonradioactive colored dyes or fluorescent dyes
(107, 184). Analysis of regional myocardial blood flow during
acute ischemia reveals an inability of perfusion to increase
distal to a stenosis compared with normal remote myocardium
(33, 39). As coronary vasodilator reserve is exhausted, there is
a major redistribution of blood flow away from the ischemic
region toward the nonischemic myocardium where metabolic
vasodilation prevails. In addition, there is a transmural blood
flow redistribution from the ischemic subendocardium toward
the subepicardium (93).

The gold standard for experimental regional contractile
function measurements is sonomicrometry (265). Simultane-
ous measurements of regional myocardial blood flow and
regional contractile function provide a means to determine the
quantitative relationship between regional blood flow (as a
surrogate for oxygen/energy supply) and regional contractile
function (as a surrogate for oxygen/energy demand). The
relation between regional contractile function and subendocar-
dial perfusion (flow-function relation) demonstrates close cou-
pling during steady-state ischemia at rest as well as over a wide
range of cardiac workloads (33, 35, 37, 91, 309). During
steady-state acute myocardial ischemia, there appears to be no
imbalance between supply (blood flow) and demand (func-

tion); rather, there is a matched reduction in both parameters
(129, 130). Such matching between regional blood flow and
contractile function also persists during major changes in heart
rate, when both blood flow and contractile function are nor-
malized for a single cardiac cycle (92). This matching can
persist for several hours and contribute to the maintenance of
myocardial viability and full recovery of contractile function
after eventual reperfusion (212). More specifically, the hall-
marks of short-term myocardial hibernation are a perfusion-
contraction match (259), together with metabolic signs of
adaptation to ischemia (210, 267) and the potential to recruit an
inotropic reserve in the dysfunctional myocardium (267). Also,
all pharmacological interventions to attenuate acute myocardial
ischemia (e.g., by nitrates, �-blockers, Ca2� antagonists, or
their combinations) operate along a fixed flow-function rela-
tionship (213–215). The two major mechanisms that precipi-
tate myocardial ischemia and must therefore be pharmacolog-
ically addressed are tachycardia (112, 113) and coronary va-
soconstriction (134, 273).

Studies evaluating brief total coronary occlusions can be
conducted in a variety of species. In contrast, to study coronary
artery stenosis, the animal under study must be large enough
that coronary artery instrumentation along with regional flow
and function measurements is feasible (i.e., in dogs and pigs
that can be instrumented with a hydraulic occluder on the
coronary artery). Acutely anesthetized animals have provided
insight into short-term coronary flow regulation over minutes
to hours but cannot evaluate the effects of chronic coronary
stenosis on long-term microvascular remodeling and collateral
growth over days to weeks (285). Acute experiments have the
advantage that sequential myocardial biopsies can be taken for
the analysis of metabolic and molecular analyses (101, 174,
210, 283). Microdialysis probes can be implanted to evaluate
interstitial mediators (209, 270), and the activity of the cardiac
innervation can be measured (132).

A significant experimental challenge is maintaining a fixed
degree of coronary artery narrowing throughout a study using
a hydraulic occluder. This limitation can by circumvented by
perfusing the coronary artery at constant pressure from a
reservoir, controlling flow with an extracorporeal pump or
perfusion of the region of interest with an extracorporeal
pressure control system (38). A major limitation of studies in
acutely anesthetized animals are the substantial confounding
effects of anesthesia and neurohormonal activation on hemo-
dynamics and flow, which alter coronary autoregulation and
produce varying degrees of coronary vasodilation and vaso-
constriction that modulate autoregulatory responses (33, 36,
39). The limitations of acute studies can be circumvented by
studying conscious, chronically instrumented animals.
While strict control of hydraulic occluders and coronary
collaterals stimulated by repetitive ischemia and chronic
stenosis at first seems a limitation, these factors can be
capitalized upon by provoking coronary collateral develop-
ment to the point where the artery can be totally occluded
without reducing resting myocardial perfusion. This is typ-
ically accomplished in dogs using ameroid occluders, which
are hygroscopic and gradually swell to produce a progres-
sive stenosis resulting in a total occlusion within 3– 4 wk.

Collateral blood vessel growth can also be stimulated in
dogs by repetitive brief coronary occlusions using a hydraulic
occluder (303, 320). Once collaterals are developed, variability
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in the hydraulic stenosis severity is no longer a problem, and
intervention effects on stress-induced ischemia can be studied
under multiple conditions. While pigs can also develop collat-
eral-dependent myocardium after ameroid occluder placement
(260), collaterals grow more slowly than in dogs, and pigs
frequently develop a subendocardial infarction (230). The
admixture of infarcted and normal myocardium greatly com-
plicates measurements of perfusion and function. Infarction
can largely be circumvented by employing a fixed diameter
stenosis on the coronary artery of farm-bred swine, resulting in
a much more severe limitation of subendocardial flow reserve
than in dogs, and there is usually contractile dysfunction at rest
(74, 77). While this is an extremely useful model to study
chronic vascular adaptations and interventions to promote
angiogenesis, alterations in myocardial physiology can com-
plicate the interpretation of flow changes. A major drawback of
chronic large animal models of coronary stenosis and collat-
eral-dependent myocardium is their expense and the labor-
intensive nature of the animal care and handling. The guinea
pig has a very well-developed collateral circulation that pre-
vents infarction from occurring following occlusion of a single
main coronary artery; to obtain infarction, multiple coronary
arteries need to be ligated (216). Thus, guinea pigs are not
suitable for in vivo ligation studies but can be used for heart
perfusion with global ischemia experiments. These issues have
motivated studies to assess flow regulation using repetitive
coronary occlusions in rats and mice, including genetically
altered animals (303).

Coronary microembolization: model rationale and variables
measured. Subclinical atherosclerotic plaque rupture or erosion
that does not result in complete thrombotic occlusion of the
coronary artery but leaves a residual blood flow into the distal
coronary microcirculation occurs spontaneously, with or with-
out clinical symptoms. Coronary microembolization is also
induced iatrogenically during percutaneous coronary interven-
tions. Atherosclerotic debris from the culprit lesion, together
with thrombotic material, soluble vasoconstrictors, as well as
thrombogenic and inflammatory substances, is washed into the
coronary microcirculation where it causes microvascular ob-
struction with resulting patchy microinfarcts and an inflamma-
tory reaction (135, 173). The inflammatory response includes
increased expression of tumor necrosis factor-� associated
with profound contractile dysfunction and upregulation of
signal transduction pathways involving nitric oxide, sphin-
gosine, and ROS, which contribute to impaired excitation-
contraction coupling (32, 299). Repetitive coronary microem-
bolization can result in global LV dysfunction and, even in the
absence of overt infarction, in heart failure (261). Coronary
microembolization can be simulated experimentally by intra-
coronary infusion of inert particles of various diameter (67)
and also by intracoronary infusion of autologous microthrombi
(191). When the target under study is ischemic heart failure,
repeated coronary microembolization can be used in both small
and large animal models. When the target under study is a
spontaneous or periprocedural minor infarction, the animal
must be large enough such that regional myocardial measure-
ments of flow, contractile function, metabolism, and morphol-
ogy are possible (i.e., dog or pig models are preferable).

The major strengths and limitations of angina models are
shown in Table 1.

Stunning, Hibernation, and Ischemic Cardiomyopathy

Stunning: model rationale and variables measured. When
ischemia caused by a total coronary occlusion is brief (e.g., as
may be experienced from coronary vasospasm), regional con-
tractile dysfunction persists for hours after reperfusion but then
completely normalizes within 24 h. This phenomenon was first
demonstrated after a 15-min circumflex coronary artery occlu-
sion in chronically instrumented dogs, was subsequently called
stunned myocardium, and is common in patients with acute
coronary syndrome (17, 19, 143). Most investigators assume
that the complete normalization of function, lack of evidence
of infarction by TTC staining, and lack of sarcolemmal dis-
ruption on electron microscopy indicate that no cardiomyocyte
death is associated with stunning. While pathological evidence
of myocyte necrosis is indeed absent, TUNEL staining per-
formed 1 h after reperfusion demonstrates that programmed
cell death or myocyte apoptosis develops in rare isolated
cardiac myocytes and circulating cardiac troponin I is in-
creased (314). Thus, while there is no evidence of infarction in
stunned myocardium, regional myocyte loss can develop when
stunning becomes repetitive.

Because the essence of stunned myocardium consists of
relatively rapid (24–48 h) reversibility of contractile dysfunc-
tion in the absence of TTC or pathological evidence of infarc-
tion, most studies use chronic large animal models in which
serial measurements of function can be performed. In addition,
regional ischemia is the preferred model to allow assessment of
the remote nonischemic regions of the heart as an internal
control. While stunned myocardium occurs after demand-
induced ischemia distal to a coronary stenosis (144), most
studies have used transient total coronary occlusion. Animals
are instrumented with a hydraulic occluder to produce brief
ischemia 1–2 wk after recovery from surgical instrumentation.

To assess regional function, most studies have used sono-
micrometry for direct measurements of subendocardial seg-
ment length shortening or wall thickening. Recent studies have
used transient occlusion of the left anterior descending coro-
nary artery (LAD) using a balloon angioplasty catheter in
closed-chest sedated animals where regional function can be
assessed with imaging approaches such as echocardiography
(314). The latter approach circumvents the need for chronic
surgical instrumentation through a prior thoracotomy. Echo-
cardiography can also be employed to assess stunning in mice
chronically instrumented with an occluder to produce transient
ischemia (63).

The dog (20, 143), pig (291, 314), and rabbit (18) are the
most commonly used species to study myocardial hibernation.
Pigs and rabbits offer the advantage of having little or no
collateral circulation, so that the severity of the ischemic insult
and of the subsequent contractile dysfunction are more uni-
form. In contrast, dogs exhibit a highly variable degree of
collateral circulation resulting in widely different degrees of
myocardial stunning (20). There are also species differences in
the time course of recovery despite similar occlusion durations
(277). Many studies have also used open-chest animal models,
although the severity of myocardial stunning in these prepara-
tions is significantly exacerbated versus conscious animal mod-
els (21, 304). Most experimental approaches to assess stunning
are quite straightforward, although ventricular fibrillation can
develop. This is more common in swine as opposed to canine
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models, because pigs have little innate coronary collateral flow
(164). Because myocardial function assessed using segment
shortening and wall thickening is load dependent, it is impor-
tant to ensure that heart rate, systolic blood pressure, and LV
end-diastolic pressure remain reasonably constant over the
time frame of the measurements. An advantage of chronic
models using regional ischemia is that each animal can poten-
tially serve as its own control; hence, it is possible to use the
same animals to study the effects of pharmacological interven-
tions on physiological end points.

Short-term hibernation: model rationale and variables
measured. A prolonged episode of moderately severe ischemia
can be sustained for a period of hours in the absence of
pathological evidence of infarction. This phenomenon is
termed short-term hibernation (139, 212). An approximate
50% reduction in perfusion leads to reduced function and
perfusion-contraction matching, which largely prevents irre-
versible myocyte injury. If the heart is reperfused within a few
hours, contractile dysfunction persists in a fashion similar to
stunned myocardium but with a more protracted time course of
recovery (i.e., lasting in the timeframe of days rather than
hours) as is typically seen with stunning after a brief total
occlusion. This in part appears to relate to reversible myofi-
brillar disassembly and myolysis in the absence of sarcolem-
mal disruption (279). Unfortunately, when the initial adaptive
response to moderate ischemia in short-term hibernation is
present for longer than 12 h, progressive myocardial necrosis
begins to develop, resulting in some degree of myocardial
infarction usually confined to the subendocardium (48, 185,
269). While imposition of acute moderate ischemia was ini-
tially proposed as a mechanism of chronic hibernating myo-
cardium, the development of progressive infarction when flow
reductions last longer than 12 h leads to a pathological entity
with myofibrillar disassembly and cardiac biomarker release
that can no longer be defined as hibernation but, rather, is more
in line with subendocardial infarction (48, 279).

Studies of short-term hibernation usually require closed-
chest animal models, although considerable insight about ad-
justments between flow and function has been gleaned from
open-chest studies of myocardial metabolism (137, 210, 239).
The latter studies usually use a cannulated branch of the left
coronary artery perfused at constant pressure. Closed-chest
animal studies usually employ chronically instrumented dogs
or pigs. In these studies, a hydraulic occluder is placed around
a coronary to reduce flow or coronary pressure to a fixed level,
which is released after several hours.

Chronic hibernation and stunning: model rationale and
variables measured. While both stunning and short-term hi-
bernation are characterized by complete functional recovery,
chronic contractile dysfunction can develop when recurrent
ischemia develops before functional normalization (21).
Chronic contractile dysfunction from repetitive ischemia de-
velops in the absence of histological infarction, and both
hibernation and stunning involve the loss of myocytes via
apoptosis in a fashion similar to what happens after brief
episodes of ischemia (193, 314). Unlike stunning, which was
initially an experimental observation that later became associ-
ated with multiple clinical correlates, chronic hibernating myo-
cardium was first characterized in patients with chronic isch-
emic heart disease displaying regional contractile dysfunction
in the absence of manifest ischemia (23, 139). Only later were

animal models used to identify cellular and molecular mecha-
nisms responsible for the adaptive responses to chronic isch-
emia (77).

While it was originally controversial whether or not flow
was reduced or normal at rest (34), it is now clear that chronic
repetitive ischemia initially results in contractile dysfunction
with normal resting flow or chronic stunning (73, 278). When
this situation persists, the reduction in function leads to a
secondary reduction in regional energy utilization accompa-
nied by reduction in resting flow (76). Thus, the reduction in
resting flow characteristic of chronic hibernating myocardium
is a result, rather than cause, of regional dysfunction.

In contrast to models of short-term ischemia, animal models
of hibernating myocardium are based on chronic coronary
stenoses that frequently progress to total occlusion and collat-
eral-dependent myocardium. In studies using ameroid occlud-
ers that gradually swell to produce chronic stenosis, dogs
usually do not develop contractile dysfunction at rest but can
do so when preexisting epicardial collaterals are ligated at the
time of instrumentation (36). Swine ameroid occluder models
frequently have contractile dysfunction in collateral-dependent
myocardium, and this is usually associated with some degree
of subendocardial infarction (230).

A more consistent model of hibernating myocardium can be
produced by instrumenting juvenile swine with a fixed diam-
eter stenosis (1.5-mm diameter) on the proximal LAD (73, 77).
As the animals grow over the subsequent 3 mo, there is a
slowly progressive limitation in coronary flow reserve, because
the LAD stenosis limits maximal myocardial perfusion, while
the mass of myocardium distal to the stenosis increases in
parallel with cardiac growth. As a result, there is a more
prolonged and gradual stimulus for coronary collateral devel-
opment so that LAD occlusion almost always develops in the
absence of infarction.

After 3 mo, regional contractile dysfunction with mild re-
ductions of resting flow in the absence of infarction is consis-
tently manifest and is similar to the changes seen in humans
with hibernating myocardium caused by a chronic LAD occlu-
sion (308). Serial studies of this animal model have demon-
strated that the heart progressively adapts from a state of
contractile dysfunction with normal resting flow (chronic stun-
ning) to a state where resting flow decreases, consistent with
hibernating myocardium (41). Such chronic hibernation is
associated with a downregulation in mitochondrial metabolism
and regional myocyte hypertrophy that maintains myocardial
wall thickness constant in the setting of regional apoptosis-
induced myocyte loss.

Over longer periods of time (up to 6 mo) the adaptive
response of hibernating myocardium persists unchanged (75),
and the downregulation in metabolism and upregulation of
proteins involved in cellular survival and cytoprotection pre-
vent cell death and, hence, further myocyte loss (62). While
infarction does not develop in this model, revascularization
only partially reverses myocardial dysfunction and does so
over a much longer time frame than seen with either myocar-
dial stunning or short-term hibernation (237). Chronic contrac-
tile dysfunction in the absence of infarction can also be induced
using a hydraulic occluder to produce an acute stenosis in
chronically instrumented animals. Chronic stunning can de-
velop in swine subjected to daily episodes of short-term hiber-
nation (169). A more rapid transition from chronic stunning to
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hibernating myocardium than the one observed in the fixed
diameter stenosis model can be achieved by acutely imposing
a critical stenosis on the LAD (301). The latter model can
develop reductions in flow with regional contractile dysfunc-
tion after 2 wk of a stenosis sufficient to prevent reactive
hyperemia.

The fixed diameter chronic stenosis model is advantageous
in that hibernating myocardium develops reproducibly in a
predictable time frame. A limitation of the fixed stenosis
porcine model is that it requires cardiac growth to produce
a progressive physiological impairment in maximum myocar-
dial perfusion, and the 3- or 4-mo period required to develop
hibernating myocardium is viewed as cost prohibitive. This
model has so far only been studied in juvenile farm bred swine
and may produce variable results if cardiac growth is attenu-
ated by limiting feeding. It is not clear whether the model can
be effected in purpose-bred swine and, particularly, in mini-
swine, where growth rates are substantially attenuated. An
additional disadvantage is that the chronic stenosis model is
associated with a high rate of spontaneous ventricular fibrilla-
tion (40). This has provided insight into the mechanisms of
sudden cardiac arrest in chronic coronary disease but reduced
the success of studying chronic adaptations to ischemia in
survivors. Finally, because of the long duration of the studies
in the presence of animal growth, it is not feasible to chroni-
cally instrument animals. Nevertheless, it is feasible to use
telemetry to assess chronically LV pressure and arrhythmias in
untethered conscious animals (242).

Ischemic cardiomyopathy: model rationale and variables
measured. Ischemic cardiomyopathy is the underlying cause of
LV dysfunction in two out of every three patients with heart
failure (105). Ischemic cardiomyopathy in humans can arise
from LV remodeling after a large myocardial infarction but,
more commonly, is the result of extensive multivessel coronary
artery disease with modest amounts of diffuse fibrosis and
patchy infarction in multiple coronary artery distributions (15).
Along these lines, preclinical studies have established that
chronic coronary artery stenosis can induce significant myo-
cyte loss with modest global replacement fibrosis that leads to
global LV dysfunction and varying degrees of congestive heart
failure when the area at risk is large. Conceptually, the stenosis
does not limit blood flow at rest. Rather, by reducing maximal
perfusion in response to stress, it sets the stage for repetitive
episodes of subendocardial ischemia. A key feature of all
animal models of ischemic cardiomyopathy is that the myo-
cardium at risk of repetitive ischemia represents a large portion
of the LV (�70% of LV mass). This has been achieved using
stenosis of the left main coronary artery in rodents or multi-
vessel coronary artery stenoses in large animals. As a result of
the large area at risk, myocyte cell death arises from both
ischemia and myocyte stretch and slippage from increased LV
end-diastolic pressure (possibly also reflecting transient isch-
emia).

In rats, ischemic cardiomyopathy can be induced by produc-
ing a fixed coronary stenosis of ~50�60% diameter reduction
on the proximal left coronary artery, which causes variable
degrees of LV dysfunction (44, 45). While replacement fibrosis
occurs in these animals, it is patchy and modest, only increas-
ing twofold over control for an average of �10% of LV
cross-sectional area. Interestingly, the degree of LV dysfunc-
tion is primarily related to myocyte cell loss (necrosis and

apoptosis) and the elevation in LV end-diastolic pressure
related to fibrosis. A similar model of ischemic cardiomyopa-
thy has also been obtained in mice (189). While rodent models
afford the ability to perform higher throughput studies and use
transgenic animals to study molecular mechanisms, they have
relatively high surgical and postoperative mortality. In addi-
tion, there is considerable variability in physiological out-
comes, such that frequently animals are retrospectively cate-
gorized into mild, moderate, and severe heart failure groups.
Reproducibility of ischemic cardiomyopathy models, there-
fore, is indeed a concern.

While left main coronary stenosis is not feasible in large
animals, multivessel coronary stenoses can produce a large
ischemic risk area and recapitulate ischemic cardiomyopathy.
When fixed diameter occluders are placed on both the proximal
LAD and circumflex arteries in growing farm-bred swine, LV
ejection fraction declines with elevated resting LV end-dia-
stolic pressure (74), consistent with compensated LV dysfunc-
tion and no overt evidence of heart failure. These animals also
exhibit primary myocyte loss with only an approximately
twofold increase in extracellular matrix accumulation. A sim-
ilar condition has been produced using multivessel ameroid
occluders in dogs (80). Aside from requiring survival surgery,
the major disadvantage of these approaches arises from the
development of sudden cardiac arrest, which in swine is related
to both ventricular fibrillation and to a lesser extent bradyar-
rhythmias. In mice, a state of ischemic cardiomyopathy can be
induced using repetitive brief coronary occlusions, and this
model is associated with substantial but reversible fibrosis of
the myocardial region subjected to repetitive ischemia (63).

Noninvasive imaging. Noninvasive cardiac imaging technol-
ogies such as echocardiography, magnetic resonance imaging
(MRI), and computed tomography can measure regional and
global contractile function and are increasingly available for
preclinical studies, particularly in larger animals. NMR spec-
troscopy can provide information on cardiac energetics (114).
More sophisticated imaging technologies such as positron
emission tomography can measure regional myocardial perfu-
sion and regional myocardial metabolism and sympathetic
innervation and are increasingly used in preclinical studies (77,
187, 268). MRI can serially measure myocardial perfusion
(264) and can provide reliable measurements of infarct size and
microvascular obstruction. MRI-derived edema, however, is
time dependent and sensitive to cardioprotective interventions
(141, 148). Therefore, MRI-derived edema can be used to
stratify an ischemic/reperfused myocardial region for protocol
assignment but not for quantitative normalization of infarct
size to area at risk.

To summarize, the major strengths and limitations of stun-
ning, hibernation, and ischemic cardiomyopathy models are
shown in Table 1.

Myocardial Infarction Models: Permanent Coronary Artery
Occlusion with Nonreperfused and Reperfused Myocardial
Infarction

MI: general considerations. Coronary occlusion causes im-
mediate cessation of aerobic metabolism in the ischemic myo-
cardium, leading to rapid ATP depletion and metabolite accu-
mulation and resulting in severe systolic dysfunction within
seconds (86). If the duration of the ischemic insult is �15 min

H820 MYOCARDIAL ISCHEMIA GUIDELINES

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00335.2017 • www.ajpheart.org
Downloaded from www.physiology.org/journal/ajpheart by ${individualUser.givenNames} ${individualUser.surname} (192.231.071.009) on April 10, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



in larger mammals such as dog and pig, restoration of flow
reverses the early ischemic cardiomyocyte changes (transient
mitochondrial swelling or glycogen depletion) and all cardio-
myocytes in the ischemic area can survive (158). Longer
periods of ischemia cause death of an increasing number of
cardiomyocytes. A 20- to 30-min interval of severe ischemia is
sufficient to induce irreversible changes in some cardiomyo-
cytes of the subendocardial area, inducing sarcolemmal disrup-
tion and striking perturbations in mitochondrial architecture,
such as ultrastructural evidence of amorphous matrix densities
and severe mitochondrial swelling (156). These early ultra-
structural alterations mark cardiomyocytes that cannot be sal-
vaged and will ultimately die in the infarct environment (157).

Experimental studies in the canine model of MI demonstrate
a transmural heterogeneity in the myocardial response to isch-
emia, suggesting that the subendocardium, where myocardial
oxygen demand is greatest, is more susceptible to ischemic
injury than the midmyocardium and subepicardium (2). Thus,
the prevailing paradigm suggests a wavefront of cardiomyo-
cyte death that progresses from the more susceptible subendo-
cardium to the less vulnerable subepicardium as the duration of
the ischemic insult increases (159, 252). Experimental studies
in large animal models have demonstrated that ischemic myo-
cardium cannot be salvaged by reperfusion after 6 h of coro-
nary occlusion (251). The increased vulnerability of subendo-
cardial regions to coronary occlusion may reflect a greater
reduction of the subendocardial blood flow due to transmural
differences in vascularization (2, 25) and extravascular com-
pression (68, 286). The wavefront concept of ischemia devel-
oping into infarction was derived from experimental studies in
dogs, where a substantial coronary collateral circulation influ-
ences the time course of cardiomyocyte necrosis (86).

The major species difference in the MI response lies in the
temporal and spatial kinetics of events and differences due to
myocardial size. In mice, durations of coronary occlusion
exceeding 60–90 min are considered irreversible, and inflam-
mation and wound healing processes are accelerated (64, 88,
221, 222). In mouse and rat models, reperfused infarcts are
typically midmyocardial, and subepicardial and subendocardial
regions are relatively spared (50, 69, 325). Studies in a sheep
model of reperfused infarction also suggest that the midmyo-
cardium may be most vulnerable to ischemic injury; in con-
trast, the subendocardium is relatively resistant (263). The pig
model of coronary occlusion-reperfusion comes closest to
human STEMI in its temporal and spatial development, but
other models are nevertheless useful to study fundamental
mechanisms of MI (140).

MI: technical considerations. Extensive protocols providing
technical details for performing permanent occlusion MI and
reperfused MI in mice and rats are available (221, 222, 228,
317, 327). While MI is most commonly performed in rodent
models, protocols in other animal models are also available
(151, 183, 218, 331). For mice, the quality of open-chest
surgery to induce coronary occlusion directly impacts study
outcomes (152, 221, 222). Minimizing the size of the thora-
cotomy and limiting bleeding by entering the thorax through
intercostal muscles are recommended.

Biomarkers that have been used to evaluate the presence of
MI include cardiac troponins and creatine kinase, and plasma
proteins such as macrophage migration inhibitory factor can
also be measured as indices of injury (47, 55). Infarct size is

widely measured as a key variable for testing genetic or
therapeutic intervention efficacy, and infarct size measure-
ments taken serially at both early and late time points can
evaluate the extent of infarct expansion (22). Echocardiogra-
phy can also be used for infarct sizing, with the caveat that
echocardiography does not distinguish between reversible isch-
emic dysfunction (stunning) and irreversible loss of function
and therefore a secondary method is needed for confirmation of
infarct size at early time points. For more details on measuring
cardiac function in mice, the reader is advised to consult the
article Guidelines for measuring cardiac physiology in mice
(196).

Permanent occlusion MI: model rationale and variables
measured. Permanent coronary occlusion is a relevant animal
model of acute STEMI reflective of patients who, due to
contraindications or logistic issues, do not receive timely or
successful reperfusion (53, 104). Permanent coronary occlu-
sion yields acute ST segment elevation infarction with robust
myocardial inflammation and long-term remodeling, thus pro-
viding a large effect size that reduces the sample size needed to
detect differences between groups. Infarction assessed in the
first 1–14 days after coronary ligation is histologically charac-
terized by coagulation band necrosis with a fulminant inflam-
matory infiltrate in the infarct and border zone regions. Infarc-
tion is geometrically and physiologically characterized by wall
thinning, increases in LV dimensions and volumes, and de-
creases in fractional shortening and ejection fraction.

Changes that occur over the first week provide information
on myocyte cell death and infarct development, inflammation
and leukocyte physiology, extracellular matrix (ECM) turnover
and fibroblast activation, and the role of endothelial cells in
neovascularization (83, 154, 165, 194, 205). Chronic evalua-
tion at time points 4–8 wk post-MI provides information on
long-term remodeling. Whether the infarct region or remote
region is the focus of investigation depends on the question
asked. Examining the infarct region provides details on active
inflammation and scar formation, while examining the remote
region provides details on still-viable myocytes within the
myocardium and remote inflammatory and ECM processes.

Perioperative and postoperative survival should be assessed,
and the time point of delineation between these two phases
should be defined. For some laboratories, the perioperative
phase includes the time until the animal recovers and becomes
ambulatory (usually within 1–3 h for mice). For other labora-
tories, the perioperative phase includes the first 24 h after
surgery. Perioperative death within 24 h post-MI in mice is
usually due to surgical errors (or very large infarct sizes), and,
in established laboratories, the 24 h surgical mortality rate due
to technical issues is �10%. In the permanent occlusion MI
model in mice, postoperative death (deaths at �24 h time
point) typically occurs during days 3–7 post-MI and is due to
rupture, acute heart failure, or arrhythmias (59, 98, 233).
Autopsy is strongly recommended for all mice that die prema-
turely, to evaluate early deaths due to technical issues and later
deaths due to complications of MI. Seven-day postoperative
mortality rates are ~10–25% (75–90% survival) for female
young mice and 50–70% (30–50% survival) for male young
mice (47, 61, 89, 98, 152, 170, 195, 202, 206, 234, 310–312,
319, 323). Immediate survival from the surgery can also be
affected by baseline characteristics such as obesity, diabetes, or
high levels of circulating inflammatory cells, which, in turn,
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determine the response to anesthesia and surgery (60, 123, 202,
203). While there is no difference in infarct tolerance between
young and middle-aged mice (323), older mice may survive
better than younger mice (202, 319).

For permanent occlusion MI models, infarct size must be
measured in fresh LV slices at the time of necropsy by TTC
staining and typically ranges from 30% to 60% of the total LV
(47, 48, 61, 89, 98, 152, 195, 202, 206, 223, 310–312, 319, 323).
The method for calculating infarct size varies across laboratories.
Some laboratories use area calculations, other laboratories mea-
sure length in the midmyocardium, and other laboratories measure
and average lengths in the subendocardium and subepicardium.
There is no need to use Evans blue for area at risk assessment in
permanent coronary occlusion models that pass the point from
ischemia to infarction, as the entire area at risk is infarcted. It
is important that MI surgical success is confirmed and that the
initial infarct injury is comparable across groups, to assess
remodeling differences at later stages. In mice, ligating the
coronary artery at the same anatomical location across groups
is important; 1 mm distal to the left atrium is the recommended
site to generate large infarcts (35–60% of total LV). Failure to
induce MI can occur, usually due to missing the coronary
artery during the ligation step. Monitoring the electrocardio-
gram for ST segment elevation during the procedure reduces
this possibility. Echocardiography at 3 h after coronary occlu-
sion can be used to exclude animals with excessively small or
large MI before randomizing groups (153, 155, 195). Late
gadolinium-enhanced MRI is also useful for selecting animals
with consistent infarct sizes (262). When assessing effects of
treatments initiated post-MI, it is important to show that infarct
size is not different between groups before treatment. Plasma
sampling at 24 h post-MI can be used to assay cardiac bio-
markers, such as troponins and inflammatory cytokines, with
the caveat that these measurements can indicate presence or
absence of infarct and not extent of injury. After coronary
occlusion, care should be taken in performing these assess-
ments to minimize disturbing animals at times when cardiac
rupture may be triggered by stress, particularly at days 3–7
post-MI in untreated controls (96, 98). Small infarcts may
reflect technical issues in missing the coronary artery, resulting
in damage from the suture rather than reflecting the intended
myocardial ischemia and infarction. Infarct sizes �30% are
typically excluded. If included, small and large infarcts may
need to be grouped separately to reduce possible type II
statistical errors.

Cardiac wound healing and remodeling, typically assessed
days to weeks post-MI, can be examined using a wide variety
of approaches, including echocardiography, histology, bio-
chemistry, and cell biology (5, 217, 328). Serial measurements
of cardiac geometry and function by echocardiography are
useful for defining phenotypes. Cardiac dimensions vary de-
pending on heart rate and depth of anesthesia, and these
parameters must be carefully controlled and matched across
groups. Cardiac functional reserve can be assessed by measur-
ing the contractile response to inotropic drugs or volume
overload. Cardiac MRI and hemodynamic assessment by pres-
sure-volume catheterization are other ways to measure cardiac
physiology parameters. It is feasible to quantify infarct size
noninvasively and serially by using cardiac MRI (181). Hemo-
dynamic evaluation in mice is a terminal procedure, which
prevents its use in serial assessments.

Hematoxylin and eosin staining provides information on
areas of necrosis and inflammation, while picrosirius red stain-
ing provides information on total collagen accumulation both
in the scar and remote regions (316). Immunohistochemistry
for neutrophils, macrophages, lymphocytes, fibroblasts, and
endothelial cells provides information on the extent of inflam-
mation, scar formation, and neovascularization. Isolating indi-
vidual cell types and assessment of ex vivo phenotypes in
culture can further aid in understanding mechanisms. Studies
have revealed that inflammation evoked by acute myocardial
infarction also occurs systemically and that the spleen and liver
are important sources of cells and factors that influence LV
remodeling (71, 72, 95, 116, 198, 199, 293).

I/R MI: model rationale and variables measured. Implemen-
tation of myocardial reperfusion strategies has significantly
reduced mortality in acute STEMI. Reperfusion has contrib-
uted to the growing pool of patients who survive the acute
event and are at risk for adverse remodeling and subsequent
development of heart failure (133, 136). In addition to salvag-
ing cardiomyocytes, reperfusion has profound effects on cel-
lular events responsible for repair and remodeling.

Although timely reperfusion is essential to salvage viable
cardiomyocytes from ischemic death, extensive preclinical and
clinical evidence suggests that reperfusion itself causes injury
(119, 121, 147). Reperfusion-induced arrhythmias and myo-
cardial stunning are self-limited and reversible forms of rep-
erfusion injury, while microvascular obstruction and lethal
cardiomyocyte injury are irreversible and extend damage, thus
contributing to adverse outcomes following MI (13, 126, 177,
241, 318). In patients, no reflow during reperfusion may be
exacerbated due to the generation of microemboli composed of
atherosclerotic debris and thrombi during percutaneous coro-
nary interventions (135, 253).

MI both with or without reperfusion shares many of the
same technical guidelines, and this information is provided
above. The one technical difference is whether the ligation is
removed at 45–60 min after the occlusion to reperfuse the
myocardium. Similar to permanent occlusion MI, studies in-
vestigating the inflammatory and reparative response following
MI with reperfusion need to take into account the dynamic
sequence of cellular events involved in repair. Common mea-
surements shared by the two MI models are shown in Table 2.
For studies aimed at investigating acute myocardial injury
using a reperfusion strategy, the duration of coronary occlusion
needs to be sufficient for the induction of significant MI but not
overly prolonged to cause irreversible injury in the entire area
at risk. From the cell physiology perspective, the reparative
response after MI can be divided into three distinct but over-
lapping phases: inflammation, proliferation, and maturation
(26, 65). In the infarcted myocardium, dying cardiomyocytes
release damage-associated molecular patterns and induce cy-
tokines and chemokines to recruit leukocytes into the infarcted
region, thus triggering an intense inflammatory reaction that
serves to clear the infarct from dead cells and ECM debris,
while initiating a reparative response (84). Early reperfusion
after irreversible cardiomyocyte injury accelerates and accen-
tuates the inflammatory reaction and has profound effects on
the pathological features of the infarct. Microvascular hyper-
permeability is evident in the myocardium with acute I/R (97).
Rapid extravasation of blood cells through the hyperpermeable
vessels may result in hemorrhagic changes (98, 178). Influx of
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phagocytotic macrophages is accelerated, resulting in more
rapid removal of dead cardiomyocytes compared with perma-
nent occlusion MI. In reperfused infarcts, dying cardiomyo-
cytes often exhibit large contraction bands, comprised of hy-
percontracted sarcomeres. Subsarcolemmal blebs and granular
mitochondrial densities, which are already present in irrevers-
ibly injured cardiomyocytes before restoration of blood flow,
become more prominent upon reperfusion.

Phagocytosis of dead cells by activated macrophages results
in the activation of endogenous anti-inflammatory pathways,
ultimately leading to resolution of the inflammatory infiltrate.
Suppression of inflammation is followed by recruitment of
activated myofibroblasts that deposit large amounts of ECM
proteins and by activation of angiogenesis (145). As the scar
matures, fibroblasts become quiescent and infarct neovessels
acquire a coat of mural cells (332). Compared with large
mammals, rodents exhibit an accelerated time course of infil-
tration with inflammatory and reparative cells (64).

Leukocyte infiltration during the inflammatory phase of
infarct healing and myofibroblast activation and accumulation
during the proliferative phase are predominantly localized in
the infarct region and border zone (87, 122, 280). During scar
maturation, the cellular content in the infarcted region is
reduced. At the same time, however, the number of activated
macrophages and fibroblasts in the remote remodeling myo-
cardium increases. Therefore, study of inflammatory and re-
parative cell infiltration and assessment of ECM protein depo-
sition should include systematic assessment of each end point
in the infarcted region, the peri-infarct area, and the remote
remodeling myocardium.

Sympathetic nerves are damaged by permanent coronary
occlusion but can regenerate after injury (220). In the setting of
chronic MI, regional hyperinnervation around the infarcted

region has been observed, and activation of cardiac sympa-
thetic nerves is important in triggering ventricular arrhythmias,
and such proarrhythmic action is dependent on the extent of
infarction (1, 70, 315, 326). In contrast, after I/R, chondroitin
sulfate proteoglycans prevent reinnervation (99, 100). Thus,
the model selected for sympathetic nerve evaluation should be
taken into consideration and depends on what question is being
asked.

MI: intervention considerations. The effects of interventions
on post-MI remodeling can be studied using both nonreper-
fused MI and reperfused MI/R models (11, 219, 232, 294,
322). Typically, nonreperfused MI yields accentuated dilative
remodeling and exacerbated dysfunction compared with a
reperfused infarct involving the same vascular territory, re-
flecting a combination of more extensive infarct and less
effective repair. In the reperfused MI/R model, the effects of
genetic or pharmacologic interventions implemented early af-
ter reperfusion may reflect differences in the extent of acute
cardiomyocyte injury rather than differences in wound healing
responses. With permanent occlusion MI (assuming a stan-
dardized area at risk) or very late reperfusion models, differ-
ences in geometry and function of the remodeling heart are
independent of acute cardiomyocyte injury and reflect effects
on inflammatory, reparative, or fibrotic cascades. In the pres-
ence of an occluded coronary artery, the delivery of systemi-
cally administered pharmacologic agents to the infarcted re-
gion of large animal models may be dependent on formation of
collaterals.

While the development of genetically targeted animals
(mice, rats, and rabbits) resulted in an explosion of studies
dissecting cell biological mechanisms and molecular pathways,
large animal models are considered closer to the clinical
situation for translational studies to test safety and effective-

Table 2. Common output measurements for in vivo MI and MI/reperfusion studies

Measurement Information Provided

Infarct size Infarct size (MI)
Infarct size per area at risk (MI/reperfusion)
Initial ischemic stimulus
Final area of damage
Effect of therapy or intervention

Plasma biomarkers Ischemia: creatine kinase, troponins
Inflammation: cytokines and chemokines
Scar formation: growth factors and the ECM
Neovascularization: angiogenic factors

Left ventricular physiology (echocardiography, MRI,
positron emission tomography imaging)

Geometry and function: dimensions, wall thickness, left ventricular dimensions and volumes,
fractional shortening, ejection fraction, remodeling index

Electrophysiological function: PR, QRS, and QT intervals/morphology; spontaneous and
inducible arrhythmias

Inflammation Immunohistochemistry and immunoblot analysis for cell numbers and inflammatory protein
expression

Flow cytometry analysis of the digested myocardium for individual cell phenotypes
Gene expression
Systemic and circulating inflammation

ECM scar Picrosirius red for collagen deposition
Immunohistochemistry and immunoblot analysis for ECM proteins and cross-linking enzymes
Gene expression
Scar strength assessment

Neovascularization Blood vessel numbers
Vessel type and quality

Microvascular damage Microvascular plugging
Hyperpermeability/edema
Hemorrhage

MI, myocardial infarction; ECM, extracellular matrix; MRI, magnetic resonance imaging.
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ness. Optimal study of molecular, cellular, and LV functional
end points and interpretation of the findings require under-
standing of the underlying pathophysiology. Assessment of
infarct size is typically the primary end point for investigations
examining the mechanisms of cardioprotection. Assessment of
chamber dimensions using echocardiography or MRI is crucial
to study the progression of adverse remodeling. Systolic and
diastolic cardiac geometry and function can be assessed non-
invasively using echocardiography (including Doppler ultra-
sound and speckle tracking), MRI, and hemodynamic assess-
ment. Mechanistic dissection of specific pathways may require
inclusion of additional cell physiology and molecular or pro-
teomic end points. In experimental models of MI, understand-
ing the time course of the cellular and molecular events is
critical for optimal study design. The effects of varying isch-
emic intervals on survival and activation of noncardiomyocyte
cellular and acellular (e.g., ECM) compartments are poorly
understood. Longer coronary occlusion times have distinct
effects on cardiac repair, by extending infarct size and by
influencing susceptible noncardiomyocyte populations, such as
endothelial cells, fibroblasts, pericytes, and immune cells (85).
Most studies characterizing responses to myocardial injury
have so far been performed in healthy young animals. Comor-
bid conditions, such as aging, diabetes, and metabolic dysfunc-
tion, affect the pattern of ischemic injury and modify the time
course and qualitative characteristics of the inflammatory and
reparative responses (27, 106, 202, 238, 298, 319, 323). These
comorbidities are relevant in the clinical context and must be
considered in translation of experimental findings to the clinic.

To summarize, the major strengths and limitations of the
nonreperfused and reperfused MI models are shown in Table 1.

Ablation

Model rationale and variables measured. The primary ad-
vantages of ablative injury techniques such as cryo-, thermal-,
and radio-frequency ablation are rigid and reproducible control
over the size, shape, and location of the region of damage.
With such methods, a wound can be stamped on the target
myocardial tissue with consistent dimensions, shape, and trans-
mural depth. Because the size of the damaged region is inde-
pendent of animal-to-animal variations in coronary anatomy
(223), the resultant ablation scar is also more reproducible than
ligation-induced injury (52, 160, 307), aiding studies of long-
term structural and functional remodeling and providing better
power to detect the effects of an experimental drug or cell
therapy. Infarct location can thus be controlled independently
from coronary anatomy and infarct transmurality can be con-
trolled (52, 160, 290, 305, 307). There are, however, important
differences in the modes of cell death in ablative vs. occlusion
injuries. For example, cryoinjury results in necrosis due to the
generation of ice crystals and disruption of the cell membrane
rather than direct ischemia. Furthermore, ablative injuries are
typically generated from the epicardial surface inward,
whereas ischemic infarcts tend to be propagated outward from
the inner myocardial layers (52, 160).

Unlike MI or MI with reperfusion, cryoinjury kills all (or
nearly all) cells within the core of the damaged region and
creates distinct wound margins. Thus, a number of studies have
used cryoinjury to avoid confounding effects of resident sur-
viving cells when testing stem cell and other related therapies

(6, 7, 258, 302). Ablation procedures typically apply a cooled/
heated probe to either the epicardial or endocardial surface of
the heart. The extent and depth of the lesion depend on both the
temperature of the probe and the time it remains in contact with
the tissue; damage can be extended by generating multiple
adjacent lesions or by repeat application at the same location.
Because these physical factors are central to injury formation,
investigators should report probe size and material, tempera-
ture, method and duration of preheating/cooling, precise ana-
tomic location and duration of probe application, and interle-
sion time and number of lesions (if applicable). Cryoablation
has been used to generate reproducible wounds and scar tissue
for the study of myocardial injury response in various species
including dogs (160, 171, 297), rabbits (6, 7, 302), rats (49, 82,
149, 190), and mice (109, 204, 257, 289, 305, 307). In mice,
survival rate after cryoinjury was nearly twice that of perma-
nent coronary ligation over an 8-wk period (307), whereas
dysfunction was similar. Lower mortality may be a conse-
quence of smaller infarct size. Ablative methodologies have
also been used in nonmammalian species such as zebrafish, to
probe the response of cardiac electrical properties to injury,
regeneration and scar formation (43, 46, 108). The ability to
destroy all cells within the cryoinfarct has provided interesting
clues regarding regeneration of fetal myocardium following
injury. In neonatal mice, mechanical or ischemic injuries to the
ventricular apex typically trigger regeneration, producing re-
covery of myocardial structure and function without scarring
(243, 276). Nontransmural cryoinfarcts in neonatal mice sim-
ilarly heal with minimal evidence of scarring and full func-
tional recovery with ongoing postnatal growth, while injuries
spanning the full thickness of the ventricular wall do not
regenerate muscle (57). Because neonatal mice can regenerate
myocardium during the first postnatal week, models of myo-
cardial ischemia in neonatal mice may be used to identify
pathways involved in cardiac regeneration (8, 208).

As with coronary ligation models, evaluation of LV geom-
etry and function with echocardiography and assessment of
electrophysiological remodeling and arrhythmia risk are rou-
tinely performed in cryoinjury models. Given the early time
course and different mechanisms of necrotic injury in cryoin-
jury versus ligation models, cryoinjury studies are typically
more focused on long-term myocardial regeneration or me-
chanical/electrophysiological remodeling rather than mecha-
nisms of acute postinjury cell death, inflammation, and scar
formation (52, 160). Ablation procedures are now used com-
monly in clinical electrophysiology, and it is therefore not
surprising that a number of experimental electrophysiology
studies have taken advantage of geometric control provided by
this model (54, 231). Cryoinjury and ischemic injury differ in
their transmural localization and the amount of surviving
myocardium (52, 109, 257, 258, 305). Finally, methods for
ablative targeting of cardiac neural tissues have proven useful
in studies of the role of autonomic inputs in normal and
arrhythmic hearts (254).

To summarize, the major strengths and limitations of the
cryoinjury model are shown in Table 1.

Cardioprotection

Model rationale and variables measured. An intervention
that is cardioprotective is broadly defined as serving to protect
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the heart (https://www.merriam-webster.com/dictionary/
cardioprotective), thereby in theory encompassing all of the
aforementioned aspects of cardiac damage and dysfunction. To
date, the only clinically established cardioprotective interven-
tion is early reperfusion (119, 133). The archetypal additive
cardioprotective intervention is, without question, ischemic
conditioning, encompassing the phenomena of ischemic pre-
conditioning, postconditioning, and remote conditioning (118,
175, 224, 247, 248, 329). Despite differences in the timing of
the protective stimulus (with preconditioning applied in a
prophylactic manner and postconditioning administered at the
time of reperfusion) and the site of the protective trigger (either
locally, or, for remote conditioning, in a tissue or organ distant
from the at-risk myocardium), all three forms of conditioning
share a common theme: there is overwhelming agreement that
ischemic preconditioning, postconditioning, and remote condi-
tioning render the heart resistant to lethal I/R-induced injury
(78, 118, 128, 163, 247).

This consensus with regard to ischemic conditioning and
cardioprotection is, however, a notable exception in the field.
Indeed, for the vast majority of the innumerable cardioprotec-
tive strategies that have been investigated, the current preclin-
ical literature on the topic of cardioprotection is fraught with
controversies and a lack of reproducibility among investigators
and laboratories (163, 188). The ensuing confusion in the field
may be attributed in part to two confounding factors: an overly
broad use of the term cardioprotection in some studies, to-
gether with false positive and false negative outcomes derived
from protocols executed in a suboptimal manner (162, 163,
188).

In some instances, a broad and suitably framed definition of
cardioprotection incorporating, for example, endothelial integ-
rity and vascular function, is appropriate (126, 225). A gener-
ally acknowledged and more narrowly focused hallmark of
cardioprotection is defined as an agent or intervention that,
when administered in the setting of ischemia/reperfusion, aug-
ments myocardial salvage and reduces myocardial infarct size
beyond that achieved by reperfusion alone (128). Accordingly,
for our purposes, we focus on cardiomyocyte viability and
define cardioprotection as a strategy that attenuates cardiomy-
ocyte death. Cardiomyocyte viability can be assessed in a full
spectrum of models, ranging from cardiomyocytes in culture to
isolated buffer-perfused hearts to in vivo studies in rodents
(mice and rats) or larger animals (including rabbits, dogs, pigs,
sheep, and, in a small number of studies, primates). There is no
ideal model that completely mirrors the clinical scenario to
fully ensure absolute translational relevance. Rather, each
model has merits and disadvantages (as shown in Table 3).

The overwhelming strength of the mouse species is the
availability of genetically modified strains to elucidate molec-
ular mechanisms once candidate cardioprotective strategies
have been identified, a benefit that is balanced by inherent
variability and resultant requirement for large sample sizes. An
additional problem of the mouse is the atypical geometry of
nontransmural infarcts, in which the subendocardium is spared
from death by diffusion of oxygen from the LV cavity and
occupies an inordinate proportion of the total LV wall thick-
ness. In all rodents, heart rate is much higher and therefore
infarct development is much faster than in larger mammals and
humans. Studies conducted in large animals (in particular, the
pig) are considered to have the greatest potential for preclinical T
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relevance (103, 140). This advantage is accompanied by sub-
stantial costs incurred and, particularly in pigs, the well-
documented high incidence of lethal ventricular arrhythmias
(282).

In all studies focused on cardioprotection, the primary end
point must be a quantitative assessment of cardiomyocyte
viability. In cell culture models, these data may be obtained
using a live-dead assay such as trypan blue exclusion, pro-
pidium iodide exclusion, or other commercially available as-
says. In intact hearts, including isolated buffer-perfused hearts
and all in vivo models, the gold standard end point is myocar-
dial infarct size by TTC staining and, at later time points,
histopathologic analysis (79, 81). For models involving reper-
fusion, the area at risk must be quantified and infarct size must
be expressed as a proportion of the risk region. With global
rather than regional ischemia/reperfusion, the entire heart is
rendered at risk and thus infarct size is appropriately expressed
as a proportion of the total ventricular area. The duration of
ischemia must be sufficient to cause significant infarction but
not complete death of at-risk cardiomyocytes in the control
cohort. That is, if the duration of ischemia is selected such that
infarct size in controls is either inordinately small or exces-
sively large, the scope for salvage and probability of achieving
cardioprotection with any intervention is negligible. Irrespec-
tive of the model used, the protocol must involve I/R (or, in cell
culture models, H/R) rather than ischemia (or hypoxia) alone.
This requirement reflects the fact that even the most powerful
and well-established cardioprotective strategies such as isch-
emic preconditioning simply delay, rather than prevent, the
progression to cardiomyocyte death and infarction (224, 324).
The duration of reperfusion must be sufficient to allow for the
accurate and unambiguous delineation of necrotic and viable
myocardium. This is of particular importance when infarct size
is quantified using TTC staining: a minimum of 1–2 h of
reperfusion is considered mandatory in rodent hearts, while
longer periods of at least 3 h are standard in large animal
models (283).

Attention must be paid to essential covariates and possible
cofounders. Important considerations for all in vivo models
include body temperature, the choice of anesthetics and anal-
gesics, and changes in the determinants of myocardial oxygen
supply and demand, all of which are well recognized to have
profound effects on infarct size (111, 247). Particular care must
be taken to avoid the possibility of inadvertent preconditioning:
examples include triggering a protective phenotype by unin-
tentionally subjecting the myocardium to brief periods of
hypoxia or ischemia during surgical preparation, or intention-
ally imposing a period of ischemia in an effort to identify the
extent of the at-risk myocardium (180). Additional covariates
and confounders are model specific. In rodents, age, sex, and
strain of the animals have all been implicated or identified to
influence myocardial infarct size (10, 111, 306) Circadian
variation, the time of day at which experiments are performed,
may also be important (16, 28, 110, 266). The canine model is
known for its variability in the magnitude of collateral blood
flow. Accordingly, when using this model, measurement of
regional myocardial blood flow during coronary artery occlu-
sion and incorporation of collateral flow as a covariate in the
analysis of infarct size are mandatory (64, 284).

Finally, the overwhelming majority of studies conducted to
date have assessed the efficacy of candidate cardioprotective

strategies using healthy, juvenile, or adult animals. There is
evidence that the infarct-sparing effect of these purportedly
protective interventions may be lost or attenuated in the setting
of clinically relevant comorbidities, including aging, type 1 and
type 2 diabetes, hypercholesterolemia, and hypertension, and
may be influenced by diet or exercise (3, 4, 51, 78, 115, 117,
146, 150, 186, 197, 246, 249, 321). Accordingly, once proof of
principle is established, it is imperative that promising cardio-
protective therapies be reevaluated, adhering to the essential
elements of rigor described above, in comorbid models (127).
All protocols must include concurrent and appropriate control
cohorts. For example, when potential cardioprotective drugs
are evaluated, controls must receive matched volumes of ve-
hicle administered in an identical manner.

THE ISSUE OF TRANSLATION: TOWARD A RANDOMIZED
CONTROLLED STUDY OR TRIAL DESIGN

There is currently no established intervention, aside from
timely reperfusion, that limits damage to hearts of patients
experiencing myocardial ischemia to the extent that clinical
outcome is improved (133, 138). Discussions of prior failures
and hope for future successes have been reviewed elsewhere
(120, 127, 176). Several elements missing from preclinical
studies of infarct size reduction have been identified and
include absence of critical investigator blinding, statistical
weaknesses (underpowered studies), and insufficient method-
ological detail. These deficiencies explain in part the failure to
translate preclinical results into effective infarct-sparing treat-
ments in patients. Thus, many have questioned the reproduc-
ibility of interventions to protect from MI (i.e., reduce infarct
size).

Much of the lack of reproducibility has been ascribed to
limited or lacking scientific rigor (29, 250). In response to these
and other concerns, the United States National Institutes of
Health now includes explicit requirements for applicants to
show, and reviewers to evaluate, the level of scientific rigor in
grant applications. Whether suboptimal rigor fully explains and
underlies the reproducibility crisis is unclear (162). Nonethe-
less, advocating for reproducibility and scientific rigor is wel-
come.

Appropriate statistical issues should be considered before
initiating an infarct-sparing intervention. Investigators should
know the standard deviation of their primary, prespecified end
point, such as infarct size, chamber dimension, or ejection
fraction. A power analysis for the primary end point will
determine and justify the number of subjects to be enrolled in
each group. This may not be feasible when investigating an
entirely innovative strategy as there may be no basis for an
estimation of the expected effect size. The standard deviation
of the investigator’s most recent blinded study can be used to
determine group size (229). The choice of statistical analyses
must be appropriate for the study design (300). For two-group
studies, t-tests (or nonparametric equivalent) may be used; for
protocols involving multiple cohorts, ANOVA (or nonpara-
metric equivalent) is mandatory. Analysis of covariance, as-
sessing the effects including variations in risk region and
collateral blood flow, may also be applied.

Blinded assignment of animals and randomization to control
or treated groups is mandatory whenever possible. Incorpora-
tion of randomization with blinding is an easy and logical
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approach. For testing classical drug-based interventions or
when comparing mutant mice, individuals responsible for
blinding can use block randomization and label tubes or mice
with a simple unique alphanumeric code. The surgeon per-
forming the protocol should have no knowledge of the inter-
vention or genotype. We recommend that the same surgeon
perform all surgeries; if multiple surgeons are used, equal
numbers from all groups should be matched across the surgeon
pool. It is imperative that neither the individual analyzing
infarct size, nor the individual performing any other secondary
analyses, knows the intervention or genotype until all data are
compiled. If the potential for excluding animals exists, this
should be done based on previously declared exclusion and
inclusion criteria, and all decisions should be made before
disclosure of group assignment; details of such exclusions
should be made clear in any publications. Table 4 shows
ARRIVE guidelines for manuscript submission, modified to
focus on ischemia studies.

The Consortium for Preclinical Assessment of Cardiopro-
tective Therapies (CAESAR) endeavored to address the pri-
mary issues related to reproducibility in cardioprotection stud-
ies (163). Performing the same protocol at multiple sites and in
multiple species was extraordinarily challenging; the most
notable were challenges in identifying the underlying explana-
tions for differences in infarct size (or other variables) between
centers while they were implementing consonant protocols.
Interestingly, there were several instances of mice being or-
dered simultaneously from the same vendor, only to have
significantly different body weights at the time of study (de-
spite being fed the same chow). To be clear, the weight
differences were relatively small but on occasion were signif-
icantly different for reasons unknown. It is likely that small
differences, such as this, could theoretically affect the results
(or the perception of not being able to reproduce studies) of
published studies. During the CAESAR experience, numerous
seemingly extraneous factors were considered, such as differ-
ences in municipal water source, room temperature, relative
humidity, type of lighting, traffic in the room, and other
seemingly innocuous details that may or may not affect the
responsiveness of mice to an infarct-sparing regimen. All of
these variables reflect inherent challenges in performing in
vivo studies.

More important than slight differences in body weight or
other such ancillary factors were initial challenges in generat-
ing equivalent infarct sizes at different institutions, despite
using the same protocol. Such occasional variations emphasize
the unequivocal requirement in all protocols for concurrent and
appropriate controls (see Cardioprotection).

OVERALL DISCUSSION AND CONCLUSIONS

As highlighted throughout these guidelines, ischemia and
I/R have multiple consequences that show temporal variation
in terms of both incidence and influence on outcomes and may
be model dependent. Examples range from acute effects (in-
cluding biochemical perturbations in cardiomyocytes and other
cardiac cell types, disruption in cardiac conduction and devel-
opment of arrhythmias, contractile dysfunction, abnormalities
in endothelial, and vascular reactivity) to longer term outcomes
(such as cardiomyocyte death, microvascular obstruction and
no-reflow, scar healing, and LV remodeling) and, ultimately,
major adverse cardiac events, including heart failure and death
(136). Figure 1 shows the diversity in models available to
assess ischemia across its spectrum, and Tables 4 and 5 show
general recommendations for rigor and reproducibility in isch-
emia studies.

While writing these guidelines, the authors discussed
whether an algorithm to define the choice of model for a given
scientific question would be helpful. The consensus was that
the topic of myocardial ischemia and infarction and the many
clinical manifestations of coronary artery disease resulting in
and from myocardial ischemia or infarction are so broad and so
complex that we find ourselves unable to provide an algorithm
that truly covers all potential scientific approaches. Indeed,
such an algorithm may be used by regulatory and funding
agencies to actually limit research in the field, which would be
counterproductive to the goals of this document.

The approach used will vary depending on the questions
being addressed; as such, all of the approaches described above
may be considered good and a gold standard if appropriate to
address the target hypothesis. In vitro studies using isolated
cardiomyocytes or even isolated organelles (e.g., mitochon-
dria) are well suited to identify single molecular targets of
injury and protection (102). Isolated, buffer-perfused heart

Table 4. Checklist of considerations for rigor and reproducibility, modified from the ARRIVE Guidelines (168)

Item Details

Ethical statements Institutional Animal Care and Use Committee approval, Guide for the Care and Use of Laboratory Animals, welfare
assessments and interventions

Animal description, housing,
husbandry

Species, strain, source, age (mean and range), sex, genotypes, body weight (mean and range), health/immune status, housing
type (specific pathogen free), cage type, bedding material, number of cage companions, light-dark cycle, room
temperature and humidity, food type, food and water access

Study design Define model used; define groups; matching, randomization, and blinding protocols; order of treatment and assessment of
groups; method to confirm model success; inclusion/exclusion criteria (e.g., lower limit for infarct size); daily monitor to
record time and cause of death; define timing of perioperative and postoperative phases for survival analysis, flow chart
for complex designs

Experimental procedures Define area examined (e.g., infarct, remote, both regions); positive and negative controls; for drugs: formulation, dose, site,
and route of administration; anesthesia and analgesic use and pain monitoring; surgical procedure details and monitoring
records (e.g., electrocardiogram, heart rate, and anesthesia depth); method of euthanasia; time of day performed

Sample sizes Number of animals used per group for each experiment; sample size calculation; number of independent replicates for cell
culture studies

Variables measured Primary and secondary end points, list any animals or samples removed from analysis with reason
Statistics Methods used for each analysis; test for assumptions

ARRIVE, Animals in Research: Reporting In Vivo Experiments.
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models can be used to study the acute biochemical and func-
tional mechanisms of myocardial I/R injury and cardioprotec-
tion. Due to the need for stable stenosis and the required spatial
resolution of regional myocardial blood flow and contractile
function measurements, large animal preparations are recom-
mended as models for the clinical manifestations of chronic
stable angina and coronary microembolization. In vivo prepa-
rations are required to study more long-term effects of myo-
cardial I/R and respective therapeutic interventions. We distin-
guish between permanent occlusion MI and reperfused MI
models and also highlight measurements in common. Perma-
nent coronary occlusion MI and reperfused MI models are both
well suited to study repair and remodeling. I/R models are
mandatory to study cardioprotection, and the ischemia must be
of sufficient severity and duration to cause some infarction.
Cryo-/thermoinjury is not suited to study the pathophysiology
of MI but well suited to study repair and regeneration pro-
cesses.

Prospective planning of study design, i.e., randomization for
appropriate control versus treatment, blinding of investigators
(as much as possible for a given experimental protocol and the
subsequent data analysis), and adequate statistics, is mandatory
for reproducibility of all experimental models of myocardial
I/R and infarction. As larger data sets are being acquired,
consideration for how to harness big data should be given (272,
274). Compiling databases to incorporate results from across
studies and across laboratories will provide a means to use
epidemiological approaches or big data tools to validate pub-

lished findings, generate novel hypotheses, and assess individ-
ual variability in response to ischemia.

In conclusion, these guidelines provide recommendations to
help the investigator plan and execute a full range of studies
involving myocardial ischemia and infarction.
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Table 5. Recommendations for ischemia studies

Common Experimental design should follow ARRIVE guidelines (see Table 4)

Cardiomyocytes When comparing groups, geometry and function end points by echocardiography assessment may not change. This
does not necessarily indicate no effect of the intervention.

Control groups can be shared across studies to reduce animal use, as long as the samples are collected within the
same timeframe, under identical conditions, and details are provided in the methods. Previously collected historical
controls should be avoided or clearly indicated.

For time-course studies, sham surgery can be replaced by day 0 negative controls if minimally invasive procedures
are used, which greatly reduces animal use.

Use to discern direct cardiomyocyte effects and responses

Isolated perfused hearts Use to discern cardiac effects and responses

Angina, stunning, hibernation, and
ischemic cardiomyopathy Use to reflect a particular clinical scenario

MI Use nonreperfused or reperfused MI to study repair and remodeling
Use nonreperfused MI to test interventions in a robust remodeling model and to test interventions in a model

clinically relevant to the nonreperfused patient
Use reperfused MI to test interventions in a model clinically relevant to the reperfused patient
Use reperfused MI to study cardioprotection
Essential to measure infarct size for nonreperfused MI and infarct size and area at risk for reperfused MI

Ablation Use to control size, shape, or location
Use to achieve maximal and uniform cell death in the target region
Use to investigate mechanisms of action of corresponding to clinical ablation technique
While not suited to study MI pathophysiology, is well suited to study repair and regeneration
Essential to quantify transmural extent of damage, to assess transmural variation
Essential to recognize that transmural extent of the lesion may evolve over time
Essential to standardize experimental protocol (e.g., probe temperature and contact time) to achieve consistent lesions

Cardioprotection Use to evaluate potentially protective strategies in the ischemia-reperfusion model
Essential to measure infarct size and area at risk

ARRIVE, Animals in Research: Reporting In Vivo Experiments; MI, myocardial infarction.
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